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A method for determining the stresses in single crystals similar to that generally used for polycrystalline 
samples is described. The method for single crystals is more complicated because of the need for accurate 
alignment and consideration of anisotropic elastic constants. Means for calculating and compensating 
for alignment errors are included. Stress values determined by this method are compared with those 
determined by other independent means. 

Introduction 

X-ray diffraction methods are widely used to determine 
stresses in polycrystalline solids. However, these meth- 
ods have been applied successfully to single crystals in 
only a few instances and then either necessitated the 
employment of special equipment or were limited to 
certain types of samples. Pseudo-Kossel patterns ob- 
tained by means of microfocus X-ray units have been 
used successfully by lmura (1954, 1957) and by Imura, 
Weissmann & Slade (1962), Ellis, Nanni, Shrier, 
Weissmann, Padawer & Hosokawa (1964) and Slade, 
Weissmann, Nakajima & Hirabayashi (1965), to deter- 
mine stresses in single-crystal samples. Stresses in a 
special type of specimen, a vapor-deposited metal film 
epitaxically grown on a sodium chloride monocrystal 
and still attached to it were measured by Freedman 
(1962). Newton (1964) used conventional X-ray equip- 
ment to measure stresses in individual crystals of a 
large-grained piece of aluminum. But as he neglected 
line shifts due to errors in alignment, his results were 
inconsistent. No general method for determining the 

* Presently associated with Speedway Laboratory, Union 
Carbide Corp. Indianapolis, Indiana 46224. 

stresses of single crystals using conventional X-ray 
equipment existed prior to this study. 

A procedure for determining the stresses from the 
shifts of X-ray diffraction lines of monocrystalline 
samples analogous to the widely used two-angle meth- 
od was developed in connection with a study of the 
origins of internal stresses in electrodeposits. This 
method which only requires certain modifications of 
the generally available types of X-ray units and a spe- 
cial specimen holder is described here and has been 
named the 'two-plane method'. 

The two-plane method differs from the two-angle 
method used for the determination of stresses in poly- 
crystalline samples and described in almost all 
diffraction textbooks in two ways. The two-plane 
method of single crystals requires the determination 
of the Bragg angle from a set of planes (hokolo) nearly 
parallel to the surface and from a second set of planes, 
(hlkJO inclined at a definite angle, ~. 

The two-plane method differs from Bond's technique 
for precision lattice determination of single crystals in 
that the Bragg angle of the inclined plane (h~klll) must 
also be determined. The alignment errors for Bond's 
method have been considered by Burke & Tomkeieff 
(1968). The evaluation of the alignment errors resulting 
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from tilting to the inclined plane is one of the contribu- 
tions of this paper. The other purposes of the paper 
are to show how the alignment errors can be corrected 
and that stresses determined by the two-plane method 
are comparable to those obtained by other independent 
means. 

Equations for Bragg-Angle changes due to 
stress and crystal alignment 

The measured Bragg angles, t o and 81 from the sets of 
planes, (hokolo) and (h~klll), respectively of the single- 
crystal specimen are related to the true angles, 0 o and 
01 by the equations" 

O 0 = O 0 + A 0~ ° + A 0 ° (1) 

O' =01 + AO~ + AO~ . (2) 

The angular shifts, AO ° and AO~ are related to the 
stresses by 

AO ° = bOas 

AO~ = b i a s  . (3) 

The coefficients, b ° and b ~ are for a uniaxial state of 
stress, i.e. a r = a z = 0 ,  a x = a s  (the coordinates are 
shown in Fig. 1) and the equal biaxial case, i.e. az=O,  
ar = ax = as, respectively: 

bO = v 00 tan 

bl = 1 0t /~ [v-- mZ(1 + v)] tan 

bO = 2v 0o tan 

(4) 
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Fig. 1. Diagram showing the relationship between the plane 
(hlklll) and the specimen surface and (hokolo). 

b l=  1[(1 + v ) r Z - ( 1 - v ) ]  tan 01 . (5) 

The constants, E and v can be calculated from the 
elastic compliances (Greenough, 1955) by: 

E~-- {Sll- 2[(Sll -- 812) -- ½&4] [m2n 2 + n2r z + m2rZ]} -1 

Sl2 + [$11 - $12) - ½S44] [men z + nZr z + m2r 2] 
v = (6) 

S l l -  2[(Sn - $12) --tzS441 [mZn z + nZr 2 + mZr 2] 

where m, n and r are the direction cosines of the normal 
to the diffracting plane. The definition of the com- 
pliances and values for several materials are given by 
Tegart (1966) and Wasilewski (1965). 

The changes in the Bragg angles due to alignment 
are 

A0 ° -  (A~°°)2 +A0 ° (7) 
(~ /2 ) -0  ° 

A0al =z~0 0 COS 0~-lt-Az 1 sin ~ +  (zl~°)2-°~(Aqg°) (zIZ1)2 
(~/2)_ 01 • 

(8) 

The quantities, ~, AO ° and AZ 1 are shown in Fig. 1. 
Equations (7) and (8) are derived in the Appendix, 
where Arp ° is also explained. Equations (7) and (8) are 
directly applicable when 0 rocking curves are obtained 
with the counter in a fixed position. When 0-20 scans 
are used, the alignment changes become 

A20O - 4(A~o°) 2 + 2 A 0 ° +  2 A Z  OO 
n__20 o ~ cos (9) 

A2Ola=2AO ° cos ~.+ 2 A z  1 sin 

+ 4(A~oO)2 4eA~oO(Az 1) 2 A Z  
.re_201 + - -~  .... cos 01 . (10) 

where A Z  is the distance between the specimen surface 
and the diffractometer axis and R is the radius of the 
diffractometer circle. The experimental methods for 
determining the various quantities in equations (7), (8), 
(9) and (10) are discussed in the next section. 

Stress measuring procedures 

The apparatus for measuring stresses in single crystals 
is a conventional X-ray diffractometer unit with some 
modifications. The apparatus used in this study is 
shown in Fig. 2. Molybdenum radiation was used in 
most tests because with short wavelength X-rays it is 
possible to obtain several high-order reflections in close 
proximity on the 0 scale. Thus, for example, for a 
copper crystal with the [001] direction nearly parallel 
to the surface, the Bragg angles of the (0,0,10) {tenth 
order of (001)} plane and of the (339) {third order of 
(113)} plane occur at 78"79 ° and 77.42 ° , respectively. 
The X-ray tube was turned on several hours prior to 
making measurements in order to stabilize the beam 
and prevent movement of the tube due to thermal ex- 
pansion. The temperature of the room was also con- 
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trolled within 1 °C. The X-radiation passed through a 
0.1 ° collimator A. The height of the beam was restricted 
to 1 mm by means of slits. The X-rays impinged on the 
crystal B held in the special specimen holder.* Dials C 
and D determined the rotation about the X and Z axes. 
The 0 rotation was performed by a motorized spec- 
imen-holder base* for quick scanning or manually for 
more accurate measurements. A scintillation counter 
G was used for its high sensitivity to Mo Kc~ radiation. 

The diffraction curves, i.e. graphs of diffracted in- 
tensity above background vs. the angle, 0 could be ob- 
tained in two ways. The 0 rocking curves were obtained 
by setting the counter at approximately twice the 
Bragg angle of the plane to be studied. The full counter 
window covered only with a two-mil-thick zirconium 
filter was able to receive radiation over a 4 ° range. For 
the 8-28 scans, which were not extensively used because 
of the AZ error, the proper slits were mounted in front 
of the counter. 

The actual determination of the values of the Bragg 
angles from the diffraction curves was performed by a 
step-counting method. First, while scanning usually 
with the motorized base, the curves were plotted on 
graph paper. From this chart, seven or nine points 
were selected. These values were spaced at equal an- 
gular intervals on both sides of the angle where the 
maximum intensity occurred. From the intensity vs. 
angle data three values of the Bragg angle were calcu- 
lated. One value was the center of gravity of the diffrac- 
tion line. The data were also fitted to the best parabolic 
equation as obtained by a least-squares method. The 
maximum-intensity point of the parabola was another 
value of the Bragg angle. The angle where the max- 
imum intensity occurred was the third value. These 
values of the Bragg angles were substituted in the 
various equations. 

When the 0 rocking procedure was used, it was ne- 
cessary that the angles be measured with the same ac- 
curacy as those on the diffractometer circle. A means 
of obtaining this precision while manually moving 
through the angle, 0 is also shown in Fig. 2. One end 
of an arm K is rigidly attached to the base of the spe- 
cimen holder. A small steel plate and a dial gage, I, are 
motmted on the other end of the bar. Two micrometers, 
E and F, are mounted on a frame, H which is rigidly 
attached to the side of the X-ray unit. In order to rotate 
the sample by a small angular increment, micrometer 
E, which was calibrated in 0.0001 inch was set at the 
desired value converted from an angular segment of 
arc. The arm was then moved by pushing against the 
metal plate with micrometer F until the dial gage, 
which was in contact with micrometer E, read zero 
again. The dial gage, which was also calibrated in units 
of 0.0001 inch was used so that there was always the 
same pressure against the micrometer. A spring J held 
the two parts of the measuring assembly together and 

* Specimen holder and motorized 0 rotation made by 
Electronics and Alloys, Englewood, New Jersey. 

could be easily removed for the motorized scanning. 
The conversion of distances on micrometer E into 

angular units was accomplished by the use of a ger- 
manium single crystal of high perfection and aligned 
in the holder by the previously outlined procedure. 
The diffraction curves for the ninth-order reflection of 
the (111) plane, which was parallel to the surface, 
caused by Mo K~I and Mo K~2 radiation were deter- 
mined. It was possible to determine the actual value of 
0 which corresponded to zero on the micrometer from 
the known location of the Keq peak. As the angle be- 
tween the two peaks was also known, it could be trans- 
lated into the distance between them as measured on 
the micrometer. The small error resulting from the fact 
that the micrometer measured the tangent rather than 
the arc was found to be negligible. 

The first step in the procedure of aligning the crystal 
consisted of orienting the plane (hokolo) for diffraction 
by rotating about the X and Y axes until the reflected 
intensity reached a maximum. The second step was 
aligning the X direction to coincide with the zone axis 
of the planes (hokolo) and (hlkllj).  This operation was 
performed by a rotation about the Z axis and tilting 
about X by an angle equal to that between the planes 
again until the maximum reflected intensity was ob- 
tained. The approximate location of the zone axis had 
to be determined prior to this procedure from a Laue 
pattern. 

The determination of 0 ° as defined in equation (1) 
involved two measurements. The zone axis had to be 
essentially parallel to the X direction during these 
measurements even though its location had no effect 
on the value of 8 °. However, the location of the zone 
axis affected the value of 01, which was also dependent 
on some of the factors involved in the determination 
of 0 °. The two measurements were the determinations 
of the Bragg angles, 0 ° and 0 °, which were the values 
of the Bragg angle measured at 2' equal to zero and with 
the specimen rotated about the Z axis so that 2' was 
equal to 180 °. Then, 

0 0 
8 ° -  8 °+  8'~ 8 ° - 8 °  (11) 

2 or dO ° -  2 

where AO 7 is the horizontal component of the angle 
between the specimen surface and the plane (hokolo). 

The vertical component, A~0 ° of the angle between 
the specimen surface and the plane (hokolo), was deter- 
mined similarly by measuring the Bragg angles, 0°/2 
and 0 03,~/2, which are obtained by rotating the crystal 
so that Z is 90 and 270 °, respectively. Then, 

o 
A~0 0 =  83n/2-- 80~/2 (12) 

2 

Another way of correcting the alignment error was 
finding the configuration so that A~ ° is zero. It can be 
seen from equation (7) that either positive or negative 
values of A~ ° result in an increase in 0 °. Therefore the 
minimum Bragg angle is obtained where A(p ° is zero. 
By determining the Bragg angle when the crystal is 
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Fig. 2. Photograph of the apparatus used in the stress measurement of the two-plane method. 

[ToJace p. 580 



S ' K E N G  PAN AND R O L F  WEIL 581 

tilted by various arbitrary angles about the X axis, the 
minimum can be found where A~0 ° is zero. The existence 
of the minimum was experimentally verified. 

The quantity, AX I had to be determined to calculate 
the alignment error of the plane (hlkllx). As shown in 
Fig. 1, AX z is the angle between OX (X axis) and OX 1, 
the zone axis of the planes (hlkflz) and (hokolo). The quan- 
tity, A Z 1 was determined by measuring the Bragg angle, 
01 and then tilting the crystal to an angle, - e  which 
brought another plane of the {hlklll} family in a dif- 
fracting condition and gave the Bragg angle value 0 -1. 
As derived in the Appendix, 

01_0-1 
- ( 1 3 )  AzZ 2 sin 

The error due to the crystal surface not coinciding 
with the diffractometer axis was eliminated by finding 
the position where AZ [equations (9) and 10)] was zero. 
This position was determined by measuring 200 and 
201 at various positions of Z. When the values of the 
lattice parameter, a0 were plotted against Z, the graph 
like that shown in Fig. 3 resulted. The intersection of 
the lines shows the true value of a0 and where A Z  is zero. 
In the experiment, where the data for Fig. 3 were deter- 
mined, (hokolo) was the tenth order reflection of the 
(001) plane of a copper crystal. There were two (hzkflO 
planes which have 0 values close to each other, namely 
the third order of (113) and the fourth order of (112). 
It is seen that all three curves intersect at the same value 
of Z. Correcting for AZ is quite tedious. When 0 rock- 

o c t  
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Fig. 3. Diagram showing the determination of the Z0 position 
(3 z = 0). 

ing scans are performed, the deviation, A Z  causes the 
diffracted X-rays to strike the counter window in a 
different place. However, as long as the range of angles 
over which the diffracted intensity rises above back- 
ground can be received, and the sensitivity of the 
counter is uniform, which it was, no shift in the Bragg 
angle results. Therefore, this procedure was preferred. 

Comparison of results from the two-plane method 
and other techniques 

Most of the experiments to determine the stresses by 
the two-plane method were performed with copper 
crystals. The original objective of this study was to 
determine the origins of stresses in electrodeposits. 
Single-crystal electrodeposits were chosen because the 
numerous studies of polycrystalline ones had failed to 
elucidate the phenomena involved in internal stresses. 
It was decided to electroplate copper because it was 
known how to produce single crystals and the process 
is relatively free of complicating side reactions. The 
substrate was a cylindrical copper single crystal. It was 
mounted in Teflon so that only the plane perpendicular 
to the cylindrical axis was exposed. Copper was de- 
posited on this plane, which was close to (001), from a 
normal solution of copper sulfate and sulfuric acid. 
The solution was prepared with distilled water and 
chemically pure reagents and treated with activated 
charcoal to remove organic contaminants. Deposition 
at low current density to remove metallic impurities 
preceded plating on the single crystals. The stresses and 
lattice parameters of the substrate were determined by 
the two-plane method. The (hokolo) plane was (0,0,10) 
and the (hlklll) was (339). These high-order reflections 
were obtained by using molybdenum radiation. The 
[110] direction was the tilting axis. Therefore, the 
stresses were calculated on the basis of equal biaxial 
stress in (110) directions. The substrate was briefly 
electropolished to clean the surface prior to copper 
plating. After plating, the stress and lattice parameter 
were determined again. One copper crystal of high per- 
fection was used only as a stress-free standard. The re- 
sults of the various tests are listed in Table 1. The stress 
and lattice-parameter values were calculated in each 
case from both the center of gravity of the diffraction 
curve and the maximum point of the parabola. A few 
data calculated using the intensity maximum are also 
included. It is seen that the calculated stresses in the 
stress-free standard, the substrate and the deposits are 
all of the same order of magnitude regardless of how 
the value of the Bragg angle was obtained from the 
diffraction curve. The deposits are therefore stress free 
within the experimental error of about + 1000 psi. This 
result was confirmed by plating single crystals of copper 
under the same conditions on a thin-sheet substrate, 
so that the stresses could be measured during deposi- 
tion by a mechanical device. A description of the device 
and the results have been published elsewhere (Schnei- 
der & Weft, 1968). 
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Table 1. Stress and lattice parameters of  

Specimen 

copper crystals 
Calculations using Calculations using 
center of gravity the parabolic 

Stress-free standard, 
test 1" 

Stress-flee standard, -600 
test 2 

Substrate, test 1 300 
20a deposit - 100 
Substrate, test 2 700 
20/1 deposit 0 
Subst~ate, test 3 - 600 
60u deposit - 500 

* Intensity maximum yielded - 

maximum 
Stress a 0 ( A )  Stress a0(A) 
(psi) (psi) 
-700 3.6152 300 3.6152 

3"6152 500 3"6152 

3"6156 100 3"6154 
3"6155 100 3"6148 
3"6154 300 3"6153 
3"6150 - 300 3"6148 
3"6154 --100 3"6153 
3-6147 - 1100 3-6148 

600 psi and 3.6152 A. 

Some experiments were conducted with 3000 ,&_-thick 
nickel single crystals epitaxically vapor deposited onto 
(001) cleavage faces of potassium chloride. The KC1 
crystals were heated to 400 °C and nickel was deposited 
at a rate of  about 15 A per second. The X-ray measure- 
ments were performed at room temperature while the 
nickel still adhered to the substrate. The stresses deter- 
mined by the two-plane method were compared with 
those obtained by the procedure used by Freedman 
(1962), where the stresses in the vapor deposit were 
calculated from the shift in the Bragg angle with respect 
to those of the substrate, which was assumed to be 
stress free. It was assumed by Freedman that the re- 
spective crystal planes of deposit and substrate are par- 
allel and that all shifts in the Bragg angle are due to 
stress and that the lattice parameter  of  the vapor depo- 
sit is the same as that of  the bulk metal. As the diffrac- 
tion curves obtained by using molybdenum radiation 
were too weak to be usable because of  the thinness of 
the nickel film, a copper tube was used. Therefore, it 
was not possible to obtain diffraction curves from high- 
order planes with approximately the same Bragg angle, 
which would have been desirable. The ( I l l ) ,  (002), 
(022) and (113) diffraction curves were determined 
using both the 20-scanning and 0-rocking techniques. 
The stresses and lattice parameter  were calculated by 

the two-plane-method equations where (hokolo) was 
(002) and (hlklll) either (111), (022) or (113). As the 
(111) and (113) planes are brought into diffracting con- 
ditions by tilting about a (110) type axis in the plane 
of  the deposit and the (022) planes by tilting about  
(100), the stresses which are listed in Table 2 are in 
these directions, as indicated. The calculations were 
made assuming an equal biaxial stress state. It can be 
seen from Table 2 that the average stress values ob- 
tained from the 0-rocking data and 0-20 scanning agree 
quite well. There is some scatter in the individual values 
in both cases al though less when 0-rocking data were 
used. Some of  the errors are reflected in the lattice- 
parameter values which should, of  course, be the same 
regardless of  which (hlk~l~) plane was used. The stresses 
calculated from the angular shift of  the nickel lines 
with respect to those of  the potassium chloride sub- 
strate show more scatter and, in general, are higher 
than those determined by the two-plane method. There 
is also less agreement between the stress values calcu- 
lated from data obtained by 0-20 scanning than by 0 
rocking. However, the values determined by the two- 
plane method and Freedman's  method agree at least 
about  the order of  magni tude of the stresses present in the 
nickel films. A further check of  the stress values can be 
made by assuming that the nickel film was stress free at the 
temperature at which it was deposited, namely 400°C. 
The stresses then resulted on cooling to 25 °C and were 
due to the difference in the coefficients of  thermal expan- 
sions of  nickel and potassium chloride. These stress val- 
ues again are of the order of  l0 s psi. Such stresses exceed 
the yield strength of bulk nickel. Freedman suggested 
that thin films possessed much higher yield strength, 
however. 

A third comparison of  stress values obtained by the 
two-plane method was made with those determined by 
the use of electrical strain gages. For this experiment, a 
niobium single crystal was selected because of its re- 
latively high yield point. A compression fixture was con- 
structed which fitted in the specimen holder used in the 
other experiments. The fixture contained a screw device 
to compress the crystal. The surface of the n iobium 
crystal was the (011) plane. The (hlk~l~) plane tilted 

Table 2. Stress values 

Stresses and lattice parameters calculated by two-plane method of nickel films on potassium chloride 

Plane Direction 0-20 scanning 0-rocking curve 
hokolo hlklll of stress o-(kpsi) a0 (A) a(kpsi) a0 (A) 
(002) (111) (110) - 212 3"5258 - 169 3.5301 
(002) (022) (100) - 119 3.5383 - 149 3.5328 
(002) (113) (110) - 150 3.5341 - 177 3.5291 

Average - 169 3.5327 - 165 3.5307 
Stresses determined from Bragg-angle shift of nickel films with respect to Bragg angle of KC1 (Freedman's Method) 

Miller indices Calculated stress (kpsi) Calculated stress (kpsi) 
of nickel plane from 0-20 scanning data from 0-rocking curve data 

(111) -136 - 5 0  
(002) - 270 - 260 
(022) - 763 - 272 
(113) -339 -276 

Average - 457 - 214 
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into position for the two-plane method was (411). As 
the sixth-order diffraction curve of (110) and the sec- 
ond order of(411) occur at the same Bragg angle, these 
two planes were selected for the two-plane-method 
measurements. The positions of the Bragg angles of the 
two planes were determined before and after straining. 
Three such experiments were performed. In each ex- 
periment, a different force was imposed by the screw 
mechanism on the crystal in the [1T0] direction and 
measured with strain gages. The stresses calculated by 
the two-plane method were in the [332] direction be- 
cause of the planes used. The strain gage yielded values 
in the [1]0] direction. These values, shown in Table 3(a), 
when converted into strains in the [332] directions 
are somewhat higher than those calculated by the use 
of  the two-plane method. Again some of the stresses 
are reflected in changes in the lattice parameter. If it is 
assumed that the lattice parameter does not change so 
that the stresses are calculated from the difference be- 
tween the Bragg angle before and after compression, 
the agreement between the strain-gage values and those 
from the X-ray data is very good as shown in Table 3(b). 
However, as already pointed out, the assumption of a 
constant and known lattice parameter can only be 
made in a few special experiments such as the straining 
of the niobium crystal in the X-ray unit. 

D i s c u s s i o n  

It is evident that the main reason for the difference be- 
tween the stress values determined by the three inde- 
pendent ways and those calculated by using the two- 
plane method is the uncertainty about the lattice par- 
ameter. If the value of a0 is known in the unstressed 
state and does not change as a result of the conditions 
which cause the stress, agreement between the X-ray 
method and the others is good as seen from the exper- 
iment with the niobium crystal. When ao in the un- 
stressed state is known, a major source of error due to 
having to tilt can be eliminated. The strain can be cal- 
culated then from the difference in the Bragg angle 
determined from the plane essentially parallel to the 

surface and that calculated from the known value a0. 
In most experiments, however, the lattice parameter in 
the unstressed state is not known and, for example, in 
the case of electrodeposits the inclusion in the lattice 
of foreign substances which cause the stress also can 
change a0 (Schneider & Well, 1968). If the wrong lattice 
parameter is assumed, considerable error can result. In 
this case, it would be preferable to determine it by the 
two-plane method. The results of the experiments 
which involved the nickel films, indicate that more con- 
sistent results can be obtained by using the two-plane 
method, than Freedman's procedure where the lattice 
parameter is assumed to be that of bulk material. The 
fact that some errors result in the lattice parameter and 
stress values as calculated by the two-plane method if 
the wrong state of stress is assumed, does not speak 
against the validity of the procedure. Similar errors 
result under the same conditions in the well-established 
X-ray stress-determination method which is used for 
polycrystalline materials. The uncertainty about the 
state of stress in single crystals can be diminished by 
making additional measurements in several directions. 
Even then some uncertainty remains because even the 
generally made assumption of plane stress has been 
shown to be wrong by Palatnik, Fuks & Koz 'ma (1965) 
under certain conditions. They found that there were 
stresses perpendicular to the surface in layers beneath 
it. These stresses, which went to zero at the surface, 
still affected the Bragg-angle value. To eliminate all 
errors is often too time consuming. Obviously, the 
more care is taken to determine the state of stress, the 
better will be the accuracy of the stress and lattice- 
parameter values. The two-plane method as used in the 
studies described in this paper was a compromise be- 
tween the accuracy of stress values and many deter- 
minations such as to make the experiments too time 
consuming. The experiments previously described indi- 
cate that the accuracy of stress values obtained by the 
two-plane method is within an acceptable range. The 
agreement with stress values determined by other means 
appears to show the validity of the two-plane method. 

While some compromise was made so that the two- 

Table 3. Stresses and lattice parameters of niobium crystal 

(a) Comparison of strain-gage and two-plane-method stresses 
Strain-gage results Two-plane-method results 

After compression Before compression 
Stress, o's Stress, as Stress, o's Stress, o's 

Test in [110l in [3721 a0 (-&) in [3321 a0 (•) in [332l 
number (kpsi) (kpsi) (kpsi) (kpsi) 

1 - 14-5 - 7.2 3.3017 - 6.1 3.3099 0.17 
2 - 11.9 - 6.9 3.3016 - 5.1 3.3039 0.26 
3 - 9.5 - 4.7 3.3014 - 3.9 3.3009 0.17 

(b) Comparison of strain-gage and Bragg-angle-shift strains 
Strain-gage measurements 

Measured Calculated 
Test Strain Strain Strain 

number in [11"0] in [l 10] in [411] 
1 -0-001100 0 . 0 0 0 4 4 6  0.000055 
2 - 0"000900 0 . 0 0 0 3 6 5  0-000045 
3 - 0"000720 0 . 0 0 0 2 9 2  0.000036 

X-ray measurements 
Measured Calculated 

Strain Strain 
A0(660) A0(822) in [110] in [411] 
- 0.057 ° - 0.009 ° 0 - 0 0 0 4 5 0  0.000071 
- 0.045 - 0 -006  0 . 0 0 0 3 5 4  0.000047 
- 0-035 - 0 .004  0 . 0 0 0 2 7 5  0.000031 
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plane method is not too cumbersome, further simplifi- 
cation appears not to be warranted. The consideration 
of the errors resulting from misalignment cannot be 
neglected. For example, neglecting a 1 ° error in the 
vertical misalignment (Aq~ °) of the (hokolo) plane results 
in a fictitious stress of 7000 psi in copper crystals when 
studied as described before. Neglecting an error of 1 ° in 
the horizontal misalignment results in a fictitious stress 
of 38000 psi in the same type of specimen. The need 
for the special equipment to measure the Bragg angle, 
the step counting, the control of the room temperature 
and a well collimated beam can be similarly justified. 
On the other hand, calculations of the effect of changes 
in the Lorentz-polarization factor over the angular 
range studied and of absorption indicated that they 
can be neglected. 

It has already been pointed out that handbook values 
of the modulus of elasticity and Poisson's ratio of po- 
lycrystalline materials should not be used to convert 
the strains, which are the measured quantities, to 
stresses. The value of Young's modulus as calculated 
from the compliances by equation (6) varies for a re- 
latively isotropic crystal like niobium from 1.12 x 107 
psi to 2.22 x 107 psi. The variation for nickel crystals is 
from 2 x 107 psi to 4.4 x 107 psi. Poisson's ratios calcu- 
lated by using equation (9) vary similarly with crystal- 
lographic direction. If the constants, b for equations 
(4) and (5) are not calculated on the basis of elastic 
constants for the particular direction under consider- 
ation the errors in the stress values can be greater than 
the standard deviation of the data obtained in the pre- 
viously described experiments. 

The results from the experiments conducted in con- 
nection with this study indicate that it is preferable to 
use the 0-rocking curve rather than 0-20 scanning. 
Not only is there no need for AZ correction [equations 
(9), (10)] in the case of the former, but as shown in 
Table 2, the results are more consistent. However, it 
is not certain that these advantages justify obtaining 
the special attachment needed to measure 0 with the 
required accuracy. As conventional scanning curves 
can be performed with any standard X-ray unit, only 
the special sample holder would be needed. The results 
shown in Table 1 as well as some others indicate that 
using the center of gravity of the diffraction curve as 
the value of the Bragg angle gives more consistent re- 
sults than the parabolic maximum or the angle where 
the intensity is a maximum. Especially where diffrac- 
tion curves are asymmetric, use of the center of gravity 
yields the best results. 

In conclusion, it is hoped that the publication of this 
method for determining stresses in single crystals by 
X-ray diffraction without elaborate additional equip- 
ment will encourage investigators to use it. In this way, 
it is hoped that the method will be developed further 
and that if there are some inconsistencies, they will 
manifest themselves. 
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APPENDIX 

In equations (7) to (10) the changes in the Bragg angles 
due to alignment errors of the normal and inclined 
planes are given. As there may be some interest in the 
derivation of these equations, they are therefore pre- 
sented here. 

The horizontal and vertical components of the angle 
between the specimen surface and the plane (hokolo) 
cause a shift in the Bragg angle as seen from equation 
(7). The horizontal component, AO °, shown in Fig. 1, 
is calculated from equation (11). 

The vertical component, Arp ° of the angle between 
the specimen surface and (hokolo) also affects the value 
of 0 ° because as a result of it the plane determined by 
the incident and diffracted X-ray beams is not parallel 
to the diffractometer plane as illustrated in Fig. 4. The 
plane determined by the incident beam, BO and the 
diffracted beam, OD' makes an angle,/~ with the X Z  
plane, which is the diffractometer plane and also con- 
tains the direction BO. The normals to (hokolo) and the 
specimen surface are OZ'  and OZ, respectively. There- 
fore the vertical and horizontal components of the 
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Fig. 4. Diagram showing the angular relationships between the 
plane (hokolo) and the specimen surface. 
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angle Z O Z '  are the same as those of the angle between 
(hokolo) and the specimen surface, namely A~00 and AO °. 
However, as the point D is further from B than Z, the 
horizontal component of the angle DOD' is greater 
than AO °. This additional change in the Bragg angle is 
AO°i. The value of AO°~ thus depends on A9 ° and 0 °. 
An equation for calculating this relationship can be 
derived by considering that 

Z ' Z "  RA~o ° 2Aq) ° 
f l _ s i n f l -  B Z "  - R(zr-20)/2 - z r - 2 ~ '  (14) 

where R is the radius of the diffracting circle and Z "  is 
the projection of Z '  on the X Z  plane. The angles fl and 
Z O Z '  are small so sines can be set equal to angles and 
arcs to chords. If ACo ° were zero, the diffracted beam 
lying in the X Z  plane would be in the direction OD. 
If D" is the projection of D' on the X Z  plane, it can be 
seen from Fig. 4 that 

D"B ROz-  20°) - R(AO°O 
cos f l=  D ' B -  R(zc-20 °) 

= 1 -  AO°i 
z c _ 2 0 0 .  (15) 

Again, because fl is a small angle, only the first two 
terms of the cosine series need be considered. Substi- 
tuting the value of fl from equation (14) into (15), 

1-½[ 2A o  0o, 
[re-  200j = 1 zc_200 (16) 

and 

AO°ii = (3(/90) 2 
~n]~) -0o • (17) 

By using the value of 0 ° obtained according to equa- 
tion (11), the error, AO ° is eliminated, then the only 
alignment error in equation (7) is AO°i. 

Errors can result in alignment of the inclined plane 
(hlkfll) because the X axis does not coincide with the 
zone axis of the planes (hokolo) and (hlkflO. As can be 
seen in Fig. 1, the angle between (hokolo) and (h~kfll) is 

and their zone axis is OXL The X axis, OX makes an 
angle AZ ~ with OX ~ which results in a Bragg-angle 
shift. There is also an error because of the already dis- 
cussed angle between the specimen surface and the 
(hokolo) plane as the true zone axis naturally lies in this 
plane. The error, AOJ consisting of two terms results. 
The change in the Bragg angle before tilting was AO °. 
After tilting OX by an angle, a, the change becomes 
(AO ° cos a). As the tilting is not performed about the 
true zone axis, OX ~, a second error, (Az ~ sin a) is in- 
troduced. Thus 

AO~ =AO ° cos ~ + Az 1 sin a (18) 

Another error, AOh results because by tilting about 
OX by a quantity c~, the actual angle between the planes, 
(hokolo) and (h~kfll) becomes ~'. The angles, ~ and ~' are 
related by 

~ ' = ~  cos AZ 1 . (19) 

Considering again only the first two terms of the cosine 

expansion, 
A0~ = off -- 0c = -- ½0~(A X 1)2. (20) 

The change in the Bragg angle is again due to the fact 
that the diffracted beam is inclined to the plane of the 
diffractometer by an amount A~0°+ Ac~. Thus, simiIarly 
to equation (17), 

AOJl (A~° -[- A(X) 2 [A~o°- (~/2) (zJX 1)2] 2 
- ( ~ z / 2 ) _ 0 1  = ( z c / 2 ) _ 0  x ( 2 1 )  

If terms of higher order in small angles are neglected, 

AO Jl = (A~°°)2 - c~Aqg°(dz I)2 
z~/2_01 . (22) 

The total Bragg-angle change is, therefore, 

AO~ + AO ~ = Az 1 sin ~ + AO ° cos 
+ (A~oO)2_ o~AqgO (d X 1)2 

(re/Z)_ 01 (23) 

which is identical to equation (8). 
As already indicated, the quantity AZ 1 can be deter- 

mined from a second measurement of the Bragg angle, 
01 when the crystal is tilted by the angle, - a  which 
brings another plane of the {hlklll} family into a dif- 
fracting condition. Then the changes in the Bragg 
angle, 

AO~[ 1 + AO~ -1 = (A~°°)2+°~A~°°(Az1) 2 
Qc/2)- 01 
- A z  1 s i n a + A 0  ° c o s a .  (24) 

It has been found experimentally that the error AO]~ is 
fairly small and can be neglected for this calculation. 
Thus, substracting equation (24) from (23), 

AOJ-A071 =2Az 1 sin ~,  (25) 

allowing the magnitude of AZ 1 to be determined. 
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